Source code for radarsimpy.processing

"""
Script for radar signal processing

This script requires that `numpy` and `scipy` be installed within the Python
environment you are running this script in.

---

- Copyright (C) 2018 - PRESENT  radarsimx.com
- E-mail: info@radarsimx.com
- Website: https://radarsimx.com

::

    ██████╗  █████╗ ██████╗  █████╗ ██████╗ ███████╗██╗███╗   ███╗██╗  ██╗
    ██╔══██╗██╔══██╗██╔══██╗██╔══██╗██╔══██╗██╔════╝██║████╗ ████║╚██╗██╔╝
    ██████╔╝███████║██║  ██║███████║██████╔╝███████╗██║██╔████╔██║ ╚███╔╝ 
    ██╔══██╗██╔══██║██║  ██║██╔══██║██╔══██╗╚════██║██║██║╚██╔╝██║ ██╔██╗ 
    ██║  ██║██║  ██║██████╔╝██║  ██║██║  ██║███████║██║██║ ╚═╝ ██║██╔╝ ██╗
    ╚═╝  ╚═╝╚═╝  ╚═╝╚═════╝ ╚═╝  ╚═╝╚═╝  ╚═╝╚══════╝╚═╝╚═╝     ╚═╝╚═╝  ╚═╝

"""

from warnings import warn
import numpy as np
from scipy.signal import convolve, find_peaks
from scipy import linalg
from scipy import fft
from .tools import log_factorial  # pylint: disable=no-name-in-module


[docs] def range_fft(data, rwin=None, n=None) -> np.ndarray: """ Calculate range profile matrix :param numpy.3darray data: Baseband data, ``[channels, pulses, adc_samples]`` :param numpy.1darray rwin: Window for FFT, length should be equal to adc_samples. (default is a square window) :param int n: FFT size, if n > adc_samples, zero-padding will be applied. (default is None) :return: A 3D array of range profile, ``[channels, pulses, range]`` :rtype: numpy.3darray """ shape = np.shape(data) if rwin is None: rwin = 1 else: rwin = np.tile(rwin[np.newaxis, np.newaxis, ...], (shape[0], shape[1], 1)) return fft.fft(data * rwin, n=n, axis=2)
[docs] def doppler_fft(data, dwin=None, n=None) -> np.ndarray: """ Calculate range-Doppler matrix :param numpy.3darray data: Range profile matrix, ``[channels, pulses, adc_samples]`` :param numpy.1darray dwin: Window for FFT, length should be equal to adc_samples. (default is a square window) :param int n: FFT size, if n > adc_samples, zero-padding will be applied. (default is None) :return: A 3D array of range-Doppler map, ``[channels, Doppler, range]`` :rtype: numpy.3darray """ shape = np.shape(data) if dwin is None: dwin = 1 else: dwin = np.tile(dwin[np.newaxis, ..., np.newaxis], (shape[0], 1, shape[2])) return fft.fft(data * dwin, n=n, axis=1)
[docs] def range_doppler_fft(data, rwin=None, dwin=None, rn=None, dn=None) -> np.ndarray: """ Range-Doppler processing :param numpy.3darray data: Baseband data, ``[channels, pulses, adc_samples]`` :param numpy.1darray rwin: Range window for FFT, length should be equal to adc_samples. (default is a square window) :param numpy.1darray dwin: Doppler window for FFT, length should be equal to adc_samples. (default is a square window) :param int rn: Range FFT size, if n > adc_samples, zero-padding will be applied. (default is None) :param int dn: Doppler FFT size, if n > adc_samples, zero-padding will be applied. (default is None) :return: A 3D array of range-Doppler map, ``[channels, Doppler, range]`` :rtype: numpy.3darray """ return doppler_fft(range_fft(data, rwin=rwin, n=rn), dwin=dwin, n=dn)
[docs] def cfar_ca_1d( data, guard, trailing, pfa=1e-5, axis=0, detector="squarelaw", offset=None ): """ 1-D Cell Averaging CFAR (CA-CFAR) :param data: Amplitude/Power data. Amplitude data for ``linear`` detector, Power data for ``squarelaw`` detector :type data: numpy.1darray or numpy.2darray :param int guard: Number of guard cells on one side, total guard cells are ``2*guard`` :param int trailing: Number of trailing cells on one side, total trailing cells are ``2*trailing`` :param float pfa: Probability of false alarm. ``default 1e-5`` :param int axis: The axis to calculat CFAR. ``default 0`` :param str detector: Detector type, ``linear`` or ``squarelaw``. ``default squarelaw`` :param float offset: CFAR threshold offset. If offect is None, threshold offset is ``2*trailing(pfa^(-1/2/trailing)-1)``. ``default None`` :return: CFAR threshold. The dimension is the same as ``data`` :rtype: numpy.1darray or numpy.2darray """ if np.iscomplexobj(data): raise ValueError("Input data should not be complex.") data_shape = np.shape(data) cfar = np.zeros_like(data) if offset is None: if detector == "squarelaw": a = trailing * 2 * (pfa ** (-1 / (trailing * 2)) - 1) elif detector == "linear": a = np.sqrt(trailing * 2 * (pfa ** (-1 / (trailing * 2)) - 1)) else: raise ValueError("`detector` can only be `linear` or `squarelaw`.") else: a = offset cfar_win = np.ones((guard + trailing) * 2 + 1) cfar_win[trailing : (trailing + guard * 2 + 1)] = 0 cfar_win = cfar_win / np.sum(cfar_win) if axis == 0: if data.ndim == 1: cfar = a * convolve(data, cfar_win, mode="same") elif data.ndim == 2: for idx in range(0, data_shape[1]): cfar[:, idx] = a * convolve(data[:, idx], cfar_win, mode="same") elif axis == 1: for idx in range(0, data_shape[0]): cfar[idx, :] = a * convolve(data[idx, :], cfar_win, mode="same") return cfar
[docs] def cfar_ca_2d(data, guard, trailing, pfa=1e-5, detector="squarelaw", offset=None): """ 2-D Cell Averaging CFAR (CA-CFAR) :param data: Amplitude/Power data. Amplitude data for ``linear`` detector, Power data for ``squarelaw`` detector :type data: numpy.1darray or numpy.2darray :param guard: Number of guard cells on one side, total guard cells are ``2*guard``. When ``guard`` is a list, ``guard[0]`` is for axis 0, and ``guard[1]`` is for axis 1. If ``guard`` is a number, axis 0 and axis 1 are the same :type guard: int or list[int] :param trailing: Number of trailing cells on one side, total trailing cells are ``2*trailing``. When ``trailing`` is a list, ``trailing[0]`` is for axis 0, and ``trailing[1]`` is for axis 1. If ``trailing`` is a number, axis 0 and axis 1 are the same :type trailing: int or list[int] :param float pfa: Probability of false alarm. ``default 1e-5`` :param str detector: Detector type, ``linear`` or ``squarelaw``. ``default squarelaw`` :param float offset: CFAR threshold offset. If offect is None, threshold offset is ``2*trailing(pfa^(-1/2/trailing)-1)``. ``default None`` :return: CFAR threshold. The dimension is the same as ``data`` :rtype: numpy.1darray or numpy.2darray """ if np.iscomplexobj(data): raise ValueError("Input data should not be complex.") guard = np.array(guard) if guard.size == 1: guard = np.tile(guard, 2) trailing = np.array(trailing) if trailing.size == 1: trailing = np.tile(trailing, 2) if offset is None: tg_sum = trailing + guard t_num = (2 * tg_sum[0] + 1) * (2 * tg_sum[1] + 1) g_num = (2 * guard[0] + 1) * (2 * guard[1] + 1) if t_num == g_num: raise ValueError("No trailing bins!") if detector == "squarelaw": a = (t_num - g_num) * (pfa ** (-1 / (t_num - g_num)) - 1) elif detector == "linear": a = np.sqrt((t_num - g_num) * (pfa ** (-1 / (t_num - g_num)) - 1)) else: raise ValueError("`detector` can only be `linear` or `squarelaw`.") else: a = offset cfar_win = np.ones(((guard + trailing) * 2 + 1)) cfar_win[ trailing[0] : (trailing[0] + guard[0] * 2 + 1), trailing[1] : (trailing[1] + guard[1] * 2 + 1), ] = 0 cfar_win = cfar_win / np.sum(cfar_win) return a * convolve(data, cfar_win, mode="same")
def os_cfar_threshold(k, n, pfa): """ Use Secant method to calculate OS-CFAR's threshold :param int n: Number of cells around CUT (cell under test) for calculating :param int k: Rank in the order :param float pfa: Probability of false alarm :return: CFAR threshold :rtype: float *Reference* Rohling, Hermann. "Radar CFAR thresholding in clutter and multiple target situations." IEEE transactions on aerospace and electronic systems 4 (1983): 608-621. """ def fun(k, n, t_os, pfa): return ( log_factorial(n) - log_factorial(n - k) - np.sum(np.log(np.arange(n, n - k, -1) + t_os)) - np.log(pfa) ) max_iter = 10000 t_max = 1e32 t_min = 1 for _ in range(0, max_iter): m_n = t_max - fun(k, n, t_max, pfa) * (t_min - t_max) / ( fun(k, n, t_min, pfa) - fun(k, n, t_max, pfa) ) f_m_n = fun(k, n, m_n, pfa) if f_m_n == 0: return m_n if np.abs(f_m_n) < 0.0001: return m_n if fun(k, n, t_max, pfa) * f_m_n < 0: # t_max = t_max t_min = m_n elif fun(k, n, t_min, pfa) * f_m_n < 0: t_max = m_n # t_min = t_min else: # print("Secant method fails.") break return None
[docs] def cfar_os_1d( data, guard, trailing, k, pfa=1e-5, axis=0, detector="squarelaw", offset=None ): """ 1-D Ordered Statistic CFAR (OS-CFAR) For edge cells, use rollovered cells to fill the missing cells. :param data: Amplitude/Power data. Amplitude data for ``linear`` detector, Power data for ``squarelaw`` detector :type data: numpy.1darray or numpy.2darray :param int guard: Number of guard cells on one side, total guard cells are ``2*guard`` :param int trailing: Number of trailing cells on one side, total trailing cells are ``2*trailing`` :param int k: Rank in the order. ``k`` is usuall chosen to satisfy ``N/2 < k < N``. Typically, ``k`` is on the order of ``0.75N`` :param float pfa: Probability of false alarm. ``default 1e-5`` :param int axis: The axis to calculat CFAR. ``default 0`` :param str detector: Detector type, ``linear`` or ``squarelaw``. ``default squarelaw`` :param float offset: CFAR threshold offset. If offect is None, threshold offset is calculated from ``pfa``. ``default None`` :return: CFAR threshold. The dimension is the same as ``data`` :rtype: numpy.1darray or numpy.2darray *Reference* [1] H. Rohling, “Radar CFAR Thresholding in Clutter and Multiple Target Situations,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-19, no. 4, pp. 608-621, 1983. """ if np.iscomplexobj(data): raise ValueError("Input data should not be complex.") data_shape = np.shape(data) cfar = np.zeros_like(data) leading = trailing # trailing = n-leading if offset is None: if detector == "squarelaw": a = os_cfar_threshold(k, trailing * 2, pfa) elif detector == "linear": a = np.sqrt(os_cfar_threshold(k, trailing * 2, pfa)) else: raise ValueError("`detector` can only be `linear` or `squarelaw`.") else: a = offset if k < trailing or k > trailing * 2: warn( "``k`` is usuall chosen to satisfy ``N/2 < k < N " "(N = " + str(trailing * 2) + ")``. " "Typically, ``k`` is on the order of ``0.75N``" ) if axis == 0: for idx in range(0, data_shape[0]): win_idx = np.mod( np.concatenate( [ np.arange(idx - leading - guard, idx - guard, 1), np.arange(idx + 1 + guard, idx + 1 + trailing + guard, 1), ] ), data_shape[0], ) if data.ndim == 1: samples = np.sort(data[win_idx.astype(int)]) cfar[idx] = a * samples[k] elif data.ndim == 2: samples = np.sort(data[win_idx.astype(int), :], axis=0) cfar[idx, :] = a * samples[k, :] elif axis == 1: for idx in range(0, data_shape[1]): win_idx = np.mod( np.concatenate( [ np.arange(idx - leading - guard, idx - guard, 1), np.arange(idx + 1 + guard, idx + 1 + trailing + guard, 1), ] ), data_shape[1], ) samples = np.sort(data[:, win_idx.astype(int)], axis=1) cfar[:, idx] = a * samples[:, k] return cfar
[docs] def cfar_os_2d(data, guard, trailing, k, pfa=1e-5, detector="squarelaw", offset=None): """ 2-D Ordered Statistic CFAR (OS-CFAR) For edge cells, use rollovered cells to fill the missing cells. :param data: Amplitude/Power data. Amplitude data for ``linear`` detector, Power data for ``squarelaw`` detector :type data: numpy.1darray or numpy.2darray :param guard: Number of guard cells on one side, total guard cells are ``2*guard``. When ``guard`` is a list, ``guard[0]`` is for axis 0, and ``guard[1]`` is for axis 1. If ``guard`` is a number, axis 0 and axis 1 are the same :type guard: int or list[int] :param trailing: Number of trailing cells on one side, total trailing cells are ``2*trailing``. When ``trailing`` is a list, ``trailing[0]`` is for axis 0, and ``trailing[1]`` is for axis 1. If ``trailing`` is a number, axis 0 and axis 1 are the same :type trailing: int or list[int] :param int k: Rank in the order. ``k`` is usuall chosen to satisfy ``N/2 < k < N``. Typically, ``k`` is on the order of ``0.75N`` :param float pfa: Probability of false alarm. ``default 1e-5`` :param str detector: Detector type, ``linear`` or ``squarelaw``. ``default squarelaw`` :param float offset: CFAR threshold offset. If offect is None, threshold offset is calculated from ``pfa``. ``default None`` :return: CFAR threshold. The dimension is the same as ``data`` :rtype: numpy.1darray or numpy.2darray *Reference* [1] H. Rohling, “Radar CFAR Thresholding in Clutter and Multiple Target Situations,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-19, no. 4, pp. 608-621, 1983. """ if np.iscomplexobj(data): raise ValueError("Input data should not be complex.") data_shape = np.shape(data) cfar = np.zeros_like(data) guard = np.array(guard) if guard.size == 1: guard = np.tile(guard, 2) trailing = np.array(trailing) if trailing.size == 1: trailing = np.tile(trailing, 2) tg_sum = trailing + guard if offset is None: t_num = (2 * tg_sum[0] + 1) * (2 * tg_sum[1] + 1) g_num = (2 * guard[0] + 1) * (2 * guard[1] + 1) if t_num == g_num: raise ValueError("No trailing bins!") if detector == "squarelaw": a = os_cfar_threshold(k, t_num - g_num, pfa) elif detector == "linear": a = np.sqrt(os_cfar_threshold(k, t_num - g_num, pfa)) else: raise ValueError("`detector` can only be `linear` or `squarelaw`.") else: a = offset if k < (t_num - g_num) / 2 or k > t_num - g_num: warn( "``k`` is usuall chosen to satisfy ``N/2 < k < N " "(N = " + str(t_num - g_num) + ")``. " "Typically, ``k`` is on the order of ``0.75N``" ) cfar_win = np.ones((tg_sum * 2 + 1), dtype=bool) cfar_win[ trailing[0] : (trailing[0] + guard[0] * 2 + 1), trailing[1] : (trailing[1] + guard[1] * 2 + 1), ] = False for idx_0 in range(0, data_shape[0]): for idx_1 in range(0, data_shape[1]): win_idx_0 = np.mod( np.arange(idx_0 - tg_sum[0], idx_0 + 1 + tg_sum[0], 1), data_shape[0] ) win_idx_1 = np.mod( np.arange(idx_1 - tg_sum[1], idx_1 + 1 + tg_sum[1], 1), data_shape[1] ) x, y = np.meshgrid(win_idx_0, win_idx_1, indexing="ij") sample_cube = data[x, y] samples = np.sort(sample_cube[cfar_win].flatten()) cfar[idx_0, idx_1] = a * samples[k] return cfar
[docs] def doa_music(covmat, nsig, spacing=0.5, scanangles=range(-90, 91)): """ Estimate arrival directions of signals using MUSIC for a uniform linear array (ULA) :param numpy.2darray covmat: Sensor covariance matrix, specified as a complex-valued, positive- definite M-by-M matrix. The quantity M is the number of elements in the ULA array :param int nsig: Number of arriving signals, specified as a positive integer. The number of signals must be smaller than the number of elements in the ULA array :param float spacing: Distance (wavelength) between array elements. ``default 0.5`` :param numpy.1darray scanangles: Broadside search angles, specified as a real-valued vector in degrees. Angles must lie in the range [-90°,90°] and must be in increasing order. ``default [-90°,90°] `` :return: doa angles in degrees, doa index, pseudo spectrum (dB) :rtype: list, list, numpy.1darray """ n_array = np.shape(covmat)[0] array = np.linspace(0, (n_array - 1) * spacing, n_array) scanangles = np.array(scanangles) # `eigh` guarantees the eigen values are sorted _, eig_vects = linalg.eigh(covmat) noise_subspace = eig_vects[:, :-nsig] array_grid, angle_grid = np.meshgrid(array, np.radians(scanangles), indexing="ij") steering_vect = np.exp(1j * 2 * np.pi * array_grid * np.sin(angle_grid)) / np.sqrt( n_array ) pseudo_spectrum = 1 / linalg.norm((noise_subspace.T.conj() @ steering_vect), axis=0) ps_db = 10 * np.log10(pseudo_spectrum / pseudo_spectrum.min()) doa_idx, _ = find_peaks(ps_db) doa_idx = doa_idx[np.argsort(ps_db[doa_idx])[-nsig:]] return scanangles[doa_idx], doa_idx, ps_db
[docs] def doa_root_music(covmat, nsig, spacing=0.5): """ Estimate arrival directions of signals using root-MUSIC for a uniform linear array (ULA) :param numpy.2darray covmat: Sensor covariance matrix, specified as a complex-valued, positive- definite M-by-M matrix. The quantity M is the number of elements in the ULA array :param int nsig: Number of arriving signals, specified as a positive integer. The number of signals must be smaller than the number of elements in the ULA array :param float spacing: Distance (wavelength) between array elements. ``default 0.5`` :return: doa angles in degrees :rtype: list """ n_covmat = np.shape(covmat)[0] _, eig_vects = linalg.eigh(covmat) noise_subspace = eig_vects[:, :-nsig] # Compute the coefficients for the polynomial. noise_mat = noise_subspace @ noise_subspace.T.conj() coeff = np.zeros((n_covmat - 1,), dtype=np.complex128) for i in range(1, n_covmat): coeff[i - 1] = np.trace(noise_mat, i) coeff = np.hstack((coeff[::-1], np.trace(noise_mat), coeff.conj())) roots = np.roots(coeff) # Find k points inside the unit circle that are also closest to the unit # circle. mask = np.abs(roots) <= 1 # On the unit circle. Need to find the closest point and remove it. for _, i in enumerate(np.where(np.abs(roots) == 1)[0]): mask_idx = np.argsort(np.abs(roots - roots[i]))[1] mask[mask_idx] = False roots = roots[mask] sorted_indices = np.argsort(1.0 - np.abs(roots)) sin_vals = np.angle(roots[sorted_indices[:nsig]]) / (2 * np.pi * spacing) return np.degrees(np.arcsin(sin_vals))
[docs] def doa_esprit(covmat, nsig, spacing=0.5): """ Estimate arrival directions of signals using ESPRIT for a uniform linear array (ULA) :param numpy.2darray covmat: Sensor covariance matrix, specified as a complex-valued, positive- definite M-by-M matrix. The quantity M is the number of elements in the ULA array :param int nsig: Number of arriving signals, specified as a positive integer. The number of signals must be smaller than the number of elements in the ULA array :param float spacing: Distance (wavelength) between array elements. ``default 0.5`` :return: doa angles in degrees :rtype: list """ _, eig_vects = linalg.eigh(covmat) signal_subspace = eig_vects[:, -nsig:] # the original array is divided into two subarrays # [0,1,...,N-2] and [1,2,...,N-1] phi = linalg.pinv(signal_subspace[0:-1]) @ signal_subspace[1:] eigs = linalg.eigvals(phi) return np.degrees(np.arcsin(np.angle(eigs) / np.pi / (spacing / 0.5)))
[docs] def doa_iaa(beam_vect, steering_vect, num_it=15, p_init=None): """ IAA-APES follows Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Square and its notation IAA-APES: iterative adaptive approach for amplitude and phase estimation y(n) = A*s(n) + e(n) (n = 1,..,N snapshots) :param numpy.2darray beam_vect: num_array X num_snap with num_array being the number of array elements and num_snap being the number of pulses/snap shots. When num_snap>1, beam_vect = [y(1),...,y(num_snap))] with y(n) - num_array X 1 :param numpy.2darray steering_vect: num_array X num_grid is the steering vectors matrix from array manifold. num_grid is the number of sources or the number of scanning points/grids :param int num_it: number of iterations. According to the paper, IAA-APES does not provide significant improvements in performance after about 15 iterations. ``default 15`` :param numpy.1darray p_init: Initial estimation. ``default None`` :return: power (in dB) at each angle on the scanning grid :rtype: numpy.1darray """ # Initialization num_grid = np.shape(steering_vect)[1] if p_init is None: spectrum_k = np.zeros(num_grid, dtype=complex) for ik in range(0, num_grid): a_vect = steering_vect[:, ik] a_vect = np.conj(a_vect[np.newaxis, :]) spectrum_k[ik] = ( 1 / ((a_vect @ a_vect.conj().T) ** 2) * np.mean(np.abs(a_vect @ beam_vect) ** 2) ).item() else: spectrum_k = p_init # iteration for _ in range(0, num_it - 1): p_diag = np.diag(spectrum_k.flatten()) r_mat = steering_vect @ p_diag @ steering_vect.conj().T r_mat_inv = np.linalg.inv(r_mat) for ik in range(0, num_grid): a_vect = steering_vect[:, ik] a_vect = np.conj(a_vect[np.newaxis, :]) spec = ( a_vect @ r_mat_inv @ beam_vect / (a_vect @ r_mat_inv @ a_vect.conj().T) ) spectrum_k[ik] = np.mean(np.abs(spec) ** 2) return 10 * np.log10(np.real(spectrum_k))
[docs] def doa_bartlett(covmat, spacing=0.5, scanangles=range(-90, 91)): """ Bartlett beamforming for a uniform linear array (ULA) :param numpy.2darray covmat: Sensor covariance matrix, specified as a complex-valued, positive- definite M-by-M matrix. The quantity M is the number of elements in the ULA array :param float spacing: Distance (wavelength) between array elements. ``default 0.5`` :param numpy.1darray scanangles: Broadside search angles, specified as a real-valued vector in degrees. Angles must lie in the range [-90°,90°] and must be in increasing order. ``default [-90°,90°] `` :return: spectrum in dB :rtype: numpy.1darray """ n_array = np.shape(covmat)[0] array = np.linspace(0, (n_array - 1) * spacing, n_array) scanangles = np.array(scanangles) array_grid, angle_grid = np.meshgrid(array, np.radians(scanangles), indexing="ij") steering_vect = np.exp(1j * 2 * np.pi * array_grid * np.sin(angle_grid)) / np.sqrt( n_array ) ps = np.sum(steering_vect.conj() * (covmat @ steering_vect), axis=0).real return 10 * np.log10(ps)
[docs] def doa_capon(covmat, spacing=0.5, scanangles=range(-90, 91)): """ Capon (MVDR) beamforming for a uniform linear array (ULA) :param numpy.2darray covmat: Sensor covariance matrix, specified as a complex-valued, positive- definite M-by-M matrix. The quantity M is the number of elements in the ULA array :param float spacing: Distance (wavelength) between array elements. ``default 0.5`` :param numpy.1darray scanangles: Broadside search angles, specified as a real-valued vector in degrees. Angles must lie in the range [-90°,90°] and must be in increasing order. ``default [-90°,90°] `` :return: spectrum in dB :rtype: numpy.1darray """ n_array = np.shape(covmat)[0] array = np.linspace(0, (n_array - 1) * spacing, n_array) scanangles = np.array(scanangles) array_grid, angle_grid = np.meshgrid(array, np.radians(scanangles), indexing="ij") steering_vect = np.exp(1j * 2 * np.pi * array_grid * np.sin(angle_grid)) / np.sqrt( n_array ) covmat = covmat + np.eye(n_array) * 0.000000001 inv_covmat = linalg.pinv(covmat) ps = np.zeros(scanangles.shape) for idx, _ in enumerate(scanangles): s_vect = steering_vect[:, idx] weight = inv_covmat @ s_vect / (s_vect.T.conj() @ inv_covmat @ s_vect) ps[idx] = np.abs(weight.T.conj() @ covmat @ weight) return 10 * np.log10(ps)
if __name__ == "__main__": # data = np.arange(1, 10000) # cfar = cfar_ca_1d(data, # 1, # 100, # pfa=1e-3, # axis=0, # detector='squarelaw', # offset=None) # print(cfar[2000]) # print(cfar[3000]) scale = os_cfar_threshold(18, 32, 1e-6) print(scale)